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We deal with a case of plane laminar gas flow. It is an adiabatic steady- 

state flow without vorticity. The method for solving such flows in the 

sub-sonic case with a specified reference velocity, has been given by 

Chaplygin [l 1. Fal’kovich extended the Chaplygin method to flows involv- 

ing more than one characteristic velocity [ 2 1. The solution described 

here is based on this extension and also makes use of Frankel’s results 

[3 I, where it is demonstrated that the flow problem of a gaseous stream 

at maximum discharge reduces to the Tricomi problem for the Chaplygin 

equation [ 4 I 

472 (1 - 7) ~+4~[1+(~-1)~]~+[1-(2~+i)~]~~=O (0.1) 

1. We assume a flat container of finite width 2B with straight parallel 

walls (see Fig. 1) and an opening of width 2b. We envisage a maximum dis- 

charge gas flow from the vessel p,Q. The flow has an axis of symmetry and 

is mixed sub and super-sonic. C1C2 is the sonic line, and D is the center 

of the nozzle. The flow region to the left of the characterist.ics DC1 and 

DC2 corresponds in the hodograph plane in Fig. 2 to epicycloids CiCI’, 

DC ‘, 

r 1 
DC ‘., 

.2/V+ 
C2C2’. The coordinates in the hodograph plane are the polars 

max and angle 8 of inclination of velocity to the x-axis. The 
region has a straight section of magnitude r. along the horizontal axis. 

We will assume that along the streamline AB2C2E the stream function 

is T/I = + l/2 Q, then along the streamline ABICIE it has the value - Q/2. 

In the hodograph plane we have the following 

+==--$Q, T~>T>O, e=+o (1.1) 

(I,==-$Q, O<T<T*, &=+T (1.2) 
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+=-+Q,B+f(h)=$n, +6 

+=o, To<7.<1*, 6-O 

+$Q, To> T-ZO, 8=---Q 

(1.3) 

(1.4) 

f (A) = It arc tg 
v 

?.Z - 1 A2 -1 
- - p - ‘A2 nrc tg h 

J m-- 

A= 
xl-1 1/-- - r, 

~Z~X-+1 
X---i x - 1 

Because of symmetry it is sufficient to deal with the upper half of 

the hodograph plane. We arrive at the following Tricomi problem for solv- 

ing the flow; it is required to find a solution for equation (0.1) within 

the region bounded by straight lines BICl and BiD and the characteristics 

W,C,’ and X1” which take the given values (1.1) to (I.41 at the bound- 

aries of the region. 

A 

Fig. 1. Fig. 2. 

If I$&, 8) has been found we transform to the flow plane by means of 

the formulas: 

0 

Z+~sin6+~cosB)de+yo(r) (1.5) 

2. Iiaving drawn the circular arc AH, radius r. with center at the 

origin, we divide the region where the solution is determined into two 
parts. 
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We have the solution in region 1 (Fig. 3) as follows 

where z”(r) is the Chaplygin function [ 1 1. 

Fig. 3. 

The solution in region 2 is as follows 

(2.1) 

(2.2) 

where <n(r) * $fl_,n (r ) is the Cherry function [ 2,5 ] ; the function \bI(r, 
8) satisfies conditions (1.1) and (1.2), the function c$, (r , 8) satisfies 

(1.2) and (1.4), whilst y$,(r , 8) should be an analytic continuation of 

function ICrl(r, 8) in region 2. Therefore on arc AH 

(2.3) 

These conditions yield a system of equations for finding the unknown 

coefficients, from which we can obtain 

Bn=-$ 
2,’ (70) 
TqG$’ 

A _ a == 0 L’ (-a 
n n nz W(To) ’ 

W (ro) = n (I ,-$p, (2.4) 

where I(r 9) is the value of the Vronskian at r = ro, built up from func- 

tions z,(r) and [,(r ). On inserting, we get 

B,=- 470 z*’ (To) 

Z (i --o)fl n* ’ 
a,,= A,,- 470 C, (70) 

iT(1 -Top n* 
(2.5) 

Expression (2.2) can now be written 

+2 (7, e) = - $8 + i A,,z, (7) sin 2ne -4. (1 TTo)P (2.6) 
n=l n=1 

We now take into consideration the condition which the stream function 

satisfies in the neighborhood of the center of the nozzle,and represent 
coefficients An in this form 
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A,,_ _!i!_ a’ + p- 
75 n’/’ 2, (7,) 

Frankel’ gave a similar representation of 

(2.7) 

flow from an infinitely wide 

container [ 7 ] . Taking (2.7) into account, expression (2.6) takes the 

following form 

where 

(2.9) 

It is not possible to determine exactly all the unknown coefficients 

from condition (1.3) on characteristic CIC1* To find several of the 

coefficients as approximately we have chosen a method in which the bound- 

ary conditions (1.3) are satisfied at several points on the character- 

istic CIC1’ 

If coefficients an are determined, equations (2.1) and (2.8) yield a 

solution of the required boundary value problem. Having solved the Tricomi 

problem we can find the relation between the mass flow of the gas Q and 

the containers parameter b/B. Let us use (1.5); we will integrate it 

along the sonic 1 ine (circular arc DC,). On the sonic line r = r when 

8 = 0, y = 0. Therefore yo(7 ) = 0. When 8, = - n/2, y = b. Thus 
L 

T=?* 

sin 6 + $1 _ cos 8) d@ 

0 
T--T* 

b -_ Q (1- TJ-~ -“x 

=a, i 
ifI (0) ~086 + 2~*~~(6)sin0J d@ 

0 

where 

We now find functions f,(8) and f2(f?): 

(2.11) 
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sin 2~6 - sin 2n6 
%I (70) Gn’ (Q) ~ 

T=T* na 

(2.13) 

where X,(r ) is the value of the auxiliary Chaplygin function [ 1 1. 
Frankel’ obtained an asymptotic formula for X,,* [ 6,7 ] 

1 - 

x,* = - ; (x&)x-l(con-l~~ + cln-1 + c2n--“a + c37?‘y + 6x,*, 6X,* = 0 (n”) 

(2.15) 

Substituting (2.15) into (2.14), we obtain 

We introduce the following integrals 

$1 x -‘,zx 

II= 
I 

jl (e) cos (0) a 12= * 
\ 

j2 (0) sin @IO 
L 

0 0 

The calculated values of which are 

(2.17) 
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Expression (2.11) becomes as follows: 

b = Q (i - ‘*)-e (11 -/- 22,1,] 
xa* 

Owing to the fact that 2 Bug = Q, we get from (2.19) 

b 
-112 

X+1 1 

B 
a 70 (II+ 27,121 

?c (1 - T*)@ 

Let us find the coefficient of discharge: 

If we compute several vaIues of f O from formulas (2.20) and (2.21) we 

can construct the relation f = f (b/B). Bear in mind that the 1 imiting 

(2.19) 

(2.20) 

(2.21 

ordinates are known: t (0) = 0.85 (cm) [ 7 ] aBd f (1) = 1. 

3. In order to determine the coefficients a it is essential to be able 

to work out Q$” on the characteristic CICi’. Thne series (2.9) is not 
suitable for this purpose because it only converges slowly for T > T . 
To find $2’ we use the asymptotic formula, obtained by Aslanov [ 8 I, *for 
the relation z,(r )/z,(:) for T > f *’ 

From this it follows that 

where 

5,” (T) = A 1 V (7) 1 neiA sin [$- t- ?)” + $1 

(3.1) 

(3.2) 

If we insert (3.1) and (3.2) into (2.9) we arrive at the following ex- 

pression for $zo(t) for r > r 
L. 

which can be put in the following form 
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Calculating (- ~)j’~ we have 

1103 

From (3.4) and 8 + f(h) = n/2, the equation of the characteristic 

C&’ it follows that on this characteristic 

28 + $ (- $1’ = x, 28 - 4 (- ?J)l/’ = 40 - 7i 
3 

Therefore, expression (3.3), for points on the characteristic CIC1’., 
can be written thus: 

4. The trigonometric series (3.5) must be made more rapidly convergent. 

We will improve the convergency by making use of Lindelof’s formula [. 9 1 

which is valid in the complex x-plane with 

to 00, for Re(S) > 1 and S not an integer. 

From formula (4. l), for 1 ZI = 1 and s - 

=r(l-s)ps--lcOs 
3px + 4nk “, 

2q + z 

(4.1) 

a cut on the real axis from 1 

1 = p/q, we can get 

(-- IY 
0 

t (s - 2n) 
(2n)! P 

‘-* 
(4.2) 

*= 

= r (1 - s) ps-l sin 
3px + 4ak 

2q + ii (-I)” (zn+l)! 
5 (s - 272 - 1) 99n+l 

(4.3) 
n=o 

In formulas (4.2) and (4.3) k takes one of the values 0, 1, 2, . . . , 
q- 1. 

We can get an expression for the main term in expansion (4.3) in a 

different way with different considerations, as was done, for instance by 

Usubakunov*. A comparison gives the following: 

1‘ (1 -s) sin 
3pz + 4xk 1 x 

29 =-. r (s) L sin 1/Z m 

* Plane-parallel flow at velocities above critical through a slit from 
a channel of finite width (Contribution to the theory of labyrinth 

packings in steam turbines and slit type weirs) Dissertation for candi- 
date’s degree Physics and Mathematics, Frunze 1955. 
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It is then possible to find k, which is important if it is necessary 

to use formula (4.2) for computations. We get the following formulas for 

the series which we are after: 

(4.4) 

The series on the right-hand side of the formulas are absolutely con- 

vergent for 141 < 277. 

5. Now let us put rq = 0.04 (Mu = 0.456, pi/p, = 0.044’7). We will 

determine the coefficients a,, by satisfying the boundary condition (1.3) 

at five points on the characteristic CiC1’. We choose the following points 

on the characteristic 

~j = + 0.26 0.32 0.38 0.44 0.50 

Bi = 83” 7.70 W5.63’ 70”42.58’ 64O6.91’ 5T20.27 

To find a,(n = 0. 1, 2, 3, 4) we have this system of equations 

24 (T .I 
0oq20 (TV, ej)+al -- 21 ('j) 

Zl(%! 
sin 2ej + . . . + a4 &h8ej=ei-$+ 

l 

To 5 sin2ne. 
+ (i _ & n_lzn’ (Q&l tTj) + (j-1. 2, 3.4. 6) (5.1) 

The coefficients on the left-hand side of (5.1) are worked out from 

tables of functions and formulas (3.51, (4.4) and (4.5). 

Determination of the elements of the last column of the expanded matrix 

in system (5.1) requires the ability to work out the values of Cherry 

functions c,(r ). 

the differential 

Knowledge of the Vronskian functions z,(r), [o(r) gives 

equation 

from which [u(r 1 can be evaluated up to an arbitrary constant, As function 

c,,(r) we will take the following 

5 (1-Q 
i, (7) = - nz, (7) 1 2-- dt 

r* tzn (t) 
(5.2) 

Calculations with Simpson’s rule give the following values for <,,(r 1 

and [a’(~ ,): 



Flov of a gas stream from a container 1105 

TABLE 1. 

T 

1 
0.26 

0.32 

0.38 
0.44 

0.50 

1 
6 

t cz c. I L 

0 0 0 0 
-2.30417 -43.9200 -625.110 -7796.64 

-3.04486 -53.3260 -650.808 -6346.84 

-3.41703 -51.3526 -451.938 14813.72 
-3.52153 -41.4922 754.233 71067.36 

-3.43409 -27.6224 5011.317 60575.12 

CI' 52’ Cs’ 54’ 

-35.6002 -698.4Z --10468.7 --140867 

The expanded matrix of the system of equations (5.1): 

TABLE 2. 

0.15832 0.28126 -0.58862 0.852i7 -1.01807 -0.130214 
0.31305 0.52489 -0.93088 0.95512 -0.61015 -0.253112 
0.46084 0.73162 -0.92329 0.39706 0.06136 -0.389836 
0.62010 0.86567 -0.61092 -0.03306 -0.25588 -0.506616 
0.78187 0.91362 -0.23207 +O. 10838 -0.46293 -0.664797 

The following values of an are obtained: 

a0 = 3.22389, aI = - 3.80398, a2 = - 1.20411, aa = - 0.49295, a4 = - 0.13810 

From formulas (2.17) and (2.18) the following values are calculated 

II = 1.38530, I2 = 0.41096 

From formulas (2.20) and (2.21) we find the vessel parameter ratio and 

coefficient of discharge: 

This flow problem was solved approximately by Usubakunov in 1955 using 

the Tricomi equation as a basis. He found that E = 0.936 when b/R = 0.64. 

This contradicts the result derived above, for it is obvious that function 

c = t (b/B) should be monotonically increasing. 

b / B = 0.749, c = 0.932 

Results more accurate than those obtained here can be achieved by 

greater accuracy in satisfying the boundary condition on the character- 

istic and greater precision in evaluating r,(r). 

This work was carried out under the guidance of S.V. Falkovich, to 

whom the author expresses his gratitude for help and advice. 
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